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LINEAR TRANSFORMATIONS, PROJECTION OPERATORS AND
GENERALIZED INVERSES-A GEOMETRIC APPROACH

ABSTRACT , c.

A generalized inverse of a linear transformation A:v - w, where v and
w are finite dimensional vector spaces, is defined using geometric concepts of
linear transformations and projecti_on gpferz){ors. The inverse is uniquely
defined in terms of specified subél;ace:s mCv, [ ;Cw and a linear
transformation N such that AN = O, NA = O. Such an inverse which is unique is
called the ImN-inverse. A Moore-Penrose type inverse is obtained by putting
N=0. Applications to optimization problems when v and w are inner product
spaces, such as least squares in a general setting, are discussed. The results
given in the paper can be extended without any major modification of proofs

to bounded linear operators with closed range on Hilbert spaces.
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1. INTRODUCTION

Let v and w

linear transformation from v tow .

R(A) = {y: Ax=yx €v}=aCw

and the nullity or kemel of A by

KA)={xev:Ax=0})=kCv.

If c and d are subspaces of v such that
¢cNd =0, the null vector
c ®&d = {xl+x2:x16c,x26d} =V
then ¢ and d are said to be direct complements.

there exists a subspace d C v , called the direct complement of c,

satisfies the conditions (1.3) and (1.4). The choice of d

any pair ¢, d

decomposition

X, €c, X, €d.

X=X1+X, 1 2

2

is not unique.

satisfying (1.3) and (1.4), any vector x € v has

be two finite dimensional vector spaces and A:iv - w be a

We denote the range of A by

(1.1)

(1.2)

(1.3)

(1.4)

Given any subspace ¢ C v,

which
Given

the unique

(1.5)

The transformation x -» x,, which is linear, is called the projection operator on

1
¢ along d and is represented by

It is seen that

(1.6)

(1.7
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R(Pc.d) =c, R(Pd.c) =d (1.8)

where I and O are identity and null transformations on v.

A: v - w is called bijective if it is onto and one-to-one. In such a case,
there is an inverse of transformation A, denoted by A-l, which is linear and
is such that

AA-l =Ilonw), A-1A =I(on v). (1.9)

The restriction of A: v - w to a subspace ¢ C v is also a linear
transformation and is denoted by
Alc: c>»w. (1.10)

Let £ be the nullity of A as defined in (1.2), m be any direct complement of k,
(i.e. kédm =v), and a be the range of A. Then

Alm :m > a is a bijection. (1.11)

This is easily seen as follows. Choose y €a and let x € v be a preimage of y, i.e.,
x is such that Ax = y. Then

Pm*XEm and Ax:A(Pm‘k"'Pk.mx): APmkx=y

so that the mapping (1.11) is onto. Further if x. e m and x, € m, then x, - x, €

1 2 1 2
m. If now Ax1 = sz, then A(xl-xz) =0= X, =X, € k  which is a contradiction
urless x| =X, Thus X #x2= Axl#sz, which shows that the mapping (1.11) is
one to one.

The result (1.11) implies the existence of an inverse

(Almy’! = T :a-m (1.12)

such that
T, Am=lonm), AT, A=A T A=P (1.13)
AT, la=lona), T AT =T . (1.14)
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Note that Tm is defined only on ¢ C w and not the whole of w. N

In this paper, we develop the concept of a generalized inverse (g-

inverse) of A when it is not necessarily bijective and provide some o

R X R A o

characterizations and applications. This is accomplished by extending Tm as a

% L AL

linear transformation on any complement of a inw.
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2. G-INVERSE OF A LINEAR TRANSFORMATION

Let A: v > w be a linear transformation with range a C w and nullity
k Cv. Consider a consistent linear equation Ax = y (€ a ) and denote the set of

solutions by

Sy={xev:Ax=y}. 2.1)

Suppose that there exists a linear transformation G: w - v such that

Gy € Sy foranyy ea 2.2)

i.e., Gy is a solution of Ax = y for any y € a. Then substituting Gy for x in Ax = y

AGy=yVvyea or AGla =1Iona) = AGA = A. (2.3)
Conversely, if there exists a G such that (2.3) holds and Ax = y is a consistent

equation, i.e., there exists an x such that Ax = y, then
AGA=A= AGAx=Ax o AGy=y (2.4)

so that Gy is a solution of Ax = y. Any G satisfying the condition (2.3) is called a
g-inverse of A; this enables us to solve a consistent equation Ax = y. Such a G
which may not be unique is denoted by A- and the set of all G satisfying (2.3) is

denoted by {A-}. The following lemmas characterize g-inverses.

Lemma 2.1 Let £k be the nullity of A, a the range of A, and G be a linear
transformation such that AGA = A, ie., G € {A"}. Then the following hold:

(i) m = R(GA) is a direct complement of &, and Tm :a > m=Gla or

GAlm =I(onm), where T = (Alm y L

(ii) If N =G - GAG, then AN =0 and NA = 0.

(iii) I = R(I-AG) is a direct complement of a, and NU = Gll.

-----------------------
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Proofof(i). Letx em Nk . Then x = GAu for some u and Ax = AGAu = ",'_*
Au=0=>x=0,ie,mnNk=0. Also, if x € v , then ;
x = GAx + (I-GA)x = x, +x, :-:'_:
where x, €m and X, € k since Ax2 = 0. Thus the conditions (1.3) and (1.4) are L:
satisfied so that m is a direct complement of k¥ . Then there exists Tm as
defined in (1.12) - (1.14), and in particular TmAIm = 1. Now f::;
o
T Ax=T AGAx=T A (GAx)=GAx N
m m m -
.
. P >
since GAx € m , which implies Tm =Gla or GAlm =1 v
M
Ry
Proof of (ji) . Obvious. ;
Proof of (jii). Lety e ! na . Then, for some x and u 12’:3\3
y = Ax = (I-AG)u = AGAx = AGI-AGu=0= Ax=0 ;f".';:
so that I Na = 0. Further .
o X
y=AGy+(I-AG)y=y=yl+y2 y
g
where y, €a andy, €l . Thus the conditions (1.3) and (1.4) are satisfied so
[ ]
that [ is a direct complement of a. Consider 2
A
N(I-AG)u = Nu = (G-GAG)u = G(I-AG)u )
‘W
for any u, so that NIl =Gl . Lemma 1 is proved. 7‘
Definition. Let m be any direct complement of k (the nullity of A) and
{ be any direct complement of a (the range of A) and N:'w - v be any linear °
transformation such that AN = O and NA = O. Then G is said to be an /mN- "
l*l
inverse of A if :‘;‘
n,’ d
Rty
(1) G is linear, (ii) GAlm =1 and Gii) GII =NU. (2.5 .
:v.. .
oA
~
¥
s
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Such a G, if it exists, is denoted by GlmN' Lemma 2.2 characterizes such

inverses.

Lemma2.2.

G =T P ,+N (2.6)
m

where Tm is as defined in (1.12) with respect to a chosen m, so that GlmN is

unique for any given [, m and N.
Proof. Laty:yl +Y, Yy, €a andyzel. Then

G y1+G

ImNY = GlmN ImN Y2

= Tm Y+ Ny2, using (2.5)

=TpPag ¥+ Ny

= (Tmpa.l +N)y Vyew.

which establishes Lemma 2.

Lemma23. G;,N € {A"]}] and the mapping
({,m,N) > (A"} is bijective. (2.7)

Proof. Using the representation (2.6)

AG mN A= A(Tm Pa.l + N)A

l

=AT P  A=AT A=A, using (1.13)

l

» M4 NY, Y, AW .
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so that G € {A7}.

ImN

Again the representation (2.6) shcws that G is unique for given [,

ImN
m,N. On the other hand, it is shown in Lemma 2.1 that given a G € {A"} , there
exists an [ , m, N for which it is the ImN -inverse, and the result (2.7) is
¢stablished.

Incidentially, the existence of a g-inverse G satisfying the condition
AGA = A is established through the representation (2.6).

The anatomy of a g-inverse is exhibited in the following diagram.

Lemma2.4. Letk, m, a, [ and N be as given in the definition above the
equation (2.5). Then the following statements on a linear transformation G are
equivalent.

(i) GAlm =1, Gil =NIll (as defined in (2.5)).
(ii) GA=P_,, GP, =N
- m.k la
(iii) GA:Pm.k' AG:Pa.I'

(iv) GA:Pm.k' AG:pa.l’

P

G=N
m
G-GAG=N.

k.

L AN A N
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A
(v) AGA=A, R@Gla)=m, Gpla=N' "
) >
(vi) AGA=A, RGIA)=m, R(GI)Ck, G-GAG=N. ; :
oA
Proof. () = (ii). :
GAx = x if x € m, using the condition GAIm =1, > :
GAx =0 if x ¢k, using the condition Ax = 0 >
which shows that GA = P_ . Further \
'4:-
Gll =NIl = GPl.a = NPl.a = NPl.a + NPa.l =N. .
rr
i) = (iii). I
GPl.a =N=>AGPl.a =0, and A=APm.k = AGA ’
‘. which together imply AG = Pa I Further \
] . v
. : N= Gpl.a = G(I-Pa. I ) = G(I-AG) ~, \
4 -
A
= (I-GA)G = (I-Pm‘ k)G = Pk.m G. ’
%
(iii) = (iv), since :_
l
o
. - _ L
Pk.m =1-GA and Pk.m G =G - GAG. N
(iv) = (v), since 35
¥, :f
GA=P_, =2 AGA=AP_, =A, S
m.k m.k N
’ GA = Pm.k = R (GA) = R(Pm.k )=m :;.;:
b
and 5
)
A
GPLa =G-GPa_[=G-GAG=N. X
(v) = (vi), since :
X
e
"
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GP a =N = AGP =AN=O=>R(GPla)C k.

l la

Further

(G-GAG)P la = N, (G-GAG)Pa = O0=>G-GAG=N.
Finally we show that (vi) = (i). Let X, €m. Then
RGla)=m=> GAx1 € m.

Now let X +8= GAxl. Thens e m , and

Axl+As=A(xl+s)=AGAxl=Axl=>As=0=>sek

using the condition AGA = A. Since m and & have only the null vector as

intersection, s = 0 which shows that GAx1 =x, or GAlm = 1. Further noting that

R(GIll)Ck = AGPla =0

we have

N=G-GAG=>

NP, =GP =Nl =Gll.

i -GAGP, =GP
.a .a

la I la

Lemma 2.4 is established.
When N = O, the statement (iv) of Lemma 2.4 reduces to the definition of

a g-inverse given by Nashed and Votruba (1976), so that their g-inverse is

G ImO which is discussed in the next section.
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3. REFELXIVE G-INVERSE

Definition. G is said to be a reflexive (or an outer inverse) of A if

AGA = A and G =GAG. (3.1)

The class of G satisfying (3.1) is represented by {A;} and any member of it by
Af .
The following lemma characterizes reflexive g-inverses

Lemma 3.1

(G,,o) = (A7) C (A7) (3.2)

i.e., all reflexive g-inverses are generated by choosing N = O, and {/,m]} as the

set of all direct complements of a and k respectively.

Proof. From the representation (2.6)

Then

A Tm Pa.l A=A Tm A=A, using (1.13)

T P AT P,=T AT P =T P using (1.14)
m a m a m m

) l a.l m al’

which shows that GlmO € {Ar}.

Conversely let AGA = A and G = GAG. Choose m = R(GA) and [ = R(I-AG).

Then as in (i) of Lemma 2.1
Gla =Tm

Further, if y €/, then y = (I-AG)u for some u so that

X0
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Gy = G(I-AGu =0, since G = GAG
=>Gll =0.

NESE S @IS RN @

L™ Oy

Thus G satisfies the definition of G, 7 and Lemma 3.1 is proved.

Lemma 3.2 ]

G, .=G, _+N (3.3) 2

ImN imO

Proof. The result (3.3) follows from the representation (2.6).
Lemma 3.3 . The following statements are equivalent. \

i) G is the ImO-inverse jz

(ii) GA=Pm,c Gll =0
(iii) GA=Pm.k,AG=Pa'1,G=GAG.

(iv) GA=P . .g =RG)=m,AG=P .
(v) AGA=A,g =R(G)=m ,R(@GI)=0

The results are proved on the same lines as in Lemma 2.4.
If v and w are inner product spaces and if we choose m as the

o

orthogonal complement of & , and [ as that of a , then the condition (iv) of

«

Y

)
s

Lemma 3.3 can be written as

2o

Gf|=I'P

& =Pg,AG=Pa (3.4)

]
SO0

Tl

where g = R(G), Plc is the orthogonal projector on k¥ and Pa is the orthogonal

P A
o
oy

P

projector on a, which is equivalent to the definition given by Moore (1920)
and Penrose (1955).
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4. L M -INVERSE

If in the definition of the Im N-inverse, we do not specify N but only
require that Gl C k , then we can write the conditions for a g-inverse in the

form

GAlm =1, AGIl =0. 4.1)

We represent the solution of (4.1) by Glm’ which may not be unique and call it

an Im-inverse.
Lemma 4.1. The following statements are equivalent for given ! and m ,

any direct complements of a and k respectively.

(i) G is an Im-inverse.
(ii) GA:Pm.k’ AG:Pa.I'

(iii) AGA=A, R(Gla)=m, R(GHU)C k.

The proof of Lemma 4.1 follows on the same lines as that of Lemma 2.4.
The definition given in (ii) of Lemma 4.1 was proposed by Langehop
(1967).
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S. OTHER INVERSES

5.1 M-inverse

An m-inverse is defined by specifying m only as in the following

lemma.
Lemma 5.1. The following conditions are equivalent for an m-inverse.

(i) GAlm =1
(i) GA = Pm.k‘

(iii) AGA = A, R(Gla)=m.

We represent an m-inverse of A, which may not be unique, by A to be

consistent with the notation developed earlier by the author (Rao, 1967).
If v is a vector space endowed with an inner product, then we may
choose m to be an orthogonal complement of k . In such a case, if Ax =y is a

consistent equation, then

min lixll = lA, yHl (5.1)
Ax=y

so that Agy is the minimum nomm solution of Ax = y. Note that any particular

solution of Ax = y is given by A’y where A” is any g-inverse satisfying the
condition A A" A = A,
To prove 5.1, we observe that if x is any solution of Ax =y, then

Ax-Apy)=0=>x-Ay €k
and by definition A, y € m , and since m and k are orthogonal complements

Ixli2 = lix-Aqy + Anyli2= lx-Agyll2 + 1AL ylI2, by Pythogorous theorem

2 IIA; yil2.

0, 4V.8 N, o,
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5.2 l-inverse

@B

An l-inverse of A, denoted by A; is a linear transformation G as

re

LY

x

characterized in Lemma 5.2.

? 7'1

L5

Lemma 5.2. The following conditions are equivalent for an [-inverse.

¢#. ) ,

i AG-= Pa.l .

S5y
‘.',':. ;_-{

(ii)) AGA=A, RGH) Ck.

[
1 ]

-
e

If w is an inner product space, we may choose /! to be the orthogonal

o

T

?,r

complement of a . In such a case

=

=
x

G
o,

minlly - Axll = lly -AAI'yII (5.2)
x

e

Lt

so that Ajy is a general least squares solution of a possibly inconsistent

equation. Observe that

¢
{

LA

y-AAl.y=(I'Pa.l)y=Pl.a yel

-

AAl.y=Pa.ly €a = AAiy-Ax eAa

-
>

-,

14
4

'.r,‘r' .
L

" 4
h'on]

so that by virtue of orthogonality of [ and a

'

«

'4'1‘:"‘-
L

ly-AxiiZ = lly - A Ay + A Ay - Axii2

¥
¥

il
N

Te %o ta
v -

=lly-A Al'yn2 + 1A Ay - AxiZ> lly - A Ay 2.

B T S
35‘- SRR N
T )

’.'

5.3 ImO-inverse

The ImO-Inverse, specified by /[, m and N = O and deumwoiea by Ao 18 o)

already characterized in Lemma 5.3. When v and w are inner product spaces, NN
we may choose m to be the orthogonal complement of k, and [ to be the °
orthogonal complement of a. In such a case the /mO-inverse can be NG
characterized by
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GA=(1-Pk)=Pg, AG=Pa (5.3)

where P,  denotes the orthogonal projection operator on x. The inverse

satisfying the conditions (5.3) is the Moore-Penrose inverse and is

represented by A*. We show that

I = min lly - Axll} = llA*+yll (5.4)

min{llxl I:lly - Ax
X

X

l

where the norms associated with x € v and y € w may be different, so that Aty
is the minimum norm least squares solution of Ax = y (possibly inconsistent
equation).

Observe that

lly - AxHiZ = P,y - Axli2 + IP, y 12 (5.5)

where the second member does not involve x, and the minimum of lly-Axll is

attained if Ax = Pa y so that X is a solution of Ax = Pa y which is a consistent

equation. The problem (5.4) demands the solution of Ax = Pa y with the

minimum norm, which is supplied by the equation (5.1)
X=A_P,y=0y.
Now
GA=Ar;1PaA =A A= Pm.k = (I-Pk )
AG:AAr;x Pa = Pa , since R(Pa )=a

so that G satisfies thc conditions (5.3) and hence it is the ImO-inverse,
Thus the ! and ImO-inverses provide solutions to the least squares
problem in the most general setting. When v and w are Euclidian spaces of m

and n dimensions respectively, the linear transformation A can be

" A _-,.’.- % nr \'!,.I | 4 '\'-‘-'\'_N" - %-'\-r,. Vf~f‘.&f *- ‘\':,-_'»':—\r‘-'-'\'t\- \\5:\-:\\\-:..INJ‘"J'N.:"»__J'__J' r\.r\-:\. N
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3

2

represented as an nxm matrix in which case explicit representations can be

AN S AN
oExEs N e

obtained for various generalized inverses as shown in Rao (1955, 1962, 1967,
1973) and Rao and Mitra (1971). The geometric approach in the case of a

general linear transformation was developed in Rao and Yanoi (1985). All the

.

ALl

results of this paper can be extended without any major modification of the

il
o

proofs to bounded linear operations with closed range on Hibert spaces.
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